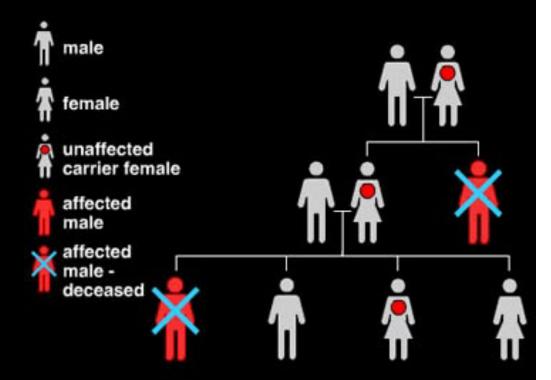
X-LINKED SEVERE COMBINED IMMUNODEFICIENCY

(X-SCID)

Carl DeGuzman 10/6/09 Biochemistry 118 Genomics and Medicine

What is X-SCID?


- X-Linked Recessive Trait
- Affects the immune system
- Usually affects only boys
- Symptoms include numerous infections before the person is three months old, pneumonitis, moniliasis, and eczema-like rashes

What does it do?

- Affects the B and T lymphocytes, specialized white blood cells that defend one from infection by viruses, bacteria, and fungi
- When one has X-SCID there is a lack of T and natural killer (NK) lymphocytes and nonfunctional B lymphocytes

Inheritance

- Females have two copies of the X –gene, and so they are usually only carriers of the disease
- Carrier women have a ¼
 chance of having an affected
 son, and a ¼ chance of having
 a carrier daughter

Punnett Square of carrier female and unaffected male.

Blue- Carrier daughter

Red- Affected son

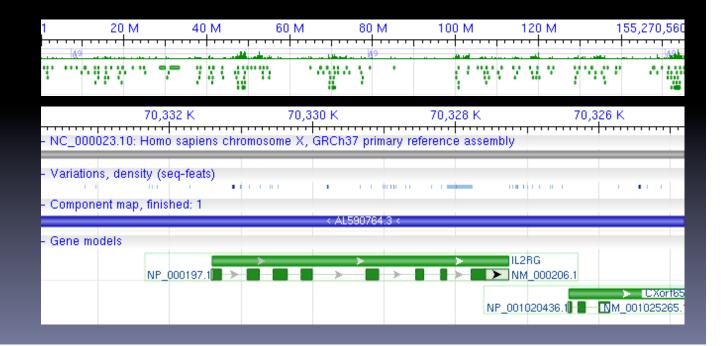
	X	Y
X	XX	XY
х	Xx	xY

Classical Diagnostic Methods

- Lymphocyte count
 - Very low number of T cells
 - Nonfunctional B cells present
 - NK cell number either low or nonexistent

	Lymphocyte Counts			Control Values	
Cell Type	Average	Range	% of Affected Individuals	Average	Range
Total lymphocytes	<2,000		70%	7 , 300 ¹	4,000- 13,500 ¹
				5,500 ²	>2,000 ²
T cells	200	0-800	90-95%	5,500	>1,800
B cells	1,300	0->3,000	5%	800	700-1,300
NK cells	<100		88%	800	

More Classical Diagnostic Methods


- Lymphocyte functional tests
 - No antibody response to vaccines and infectious agents
 - T cell responses to mitogens are lacking
- Immunoglobulin concentrations
 - Low serum concentrations of IgA and IgM
 - Normal amount of IgG at birth, but disappearance of IgG by three months of age
- Thymus
 - Absence of thymic shadow on chest X-ray

Classical Treatment

- Bone marrow transplantation
 - Try to use HLA-matched bone marrow transplantation from a relative
 - If that is not available, haploidentical parental bone marrow depleted of mature T cells is used
 - Matched, unrelated donor transplantation of bone marrow or cord blood stem cells can also be used, but GVHD is a significant problem
 - Finally, peripherally harvested hematopoietic stem cells can be used
- Administration of immunoglobulin


The Gene

- Chromosome X; Location Xq 13.1
- X-SCID results from a mutation in the interleukin 2 receptor gamma (IL2RG) gene
- Only known gene associated with X-SCID
- Prevents the proper development of T lymphocytes

Genetic Tests

- Diagnostic testing
 - Sequence analysis
 - Missense and nonsense mutations
 - Splice and regulatory regions
 - Insertions
 - Targeted mutation analysis
 - Large deletions
 - Complex mutations

Genetic Tests (cont.)

- Carrier testing
 - Testing for known family-specific IL2RG mutations
 - Sequence analysis of the IL2RG coding region and splice regions
 - Southern blot analysis
 - X-chromosome inactivation studies

Genetic Treatment

- Gene Therapy
 - Uses autologous bone marrow stem/progenitor cells retrovirally transduced with a therapeutic gene
 - Only considered for those who are not eligible for BMT or have failed BMT
 - Poses substantial cancer risk (leukemia), but at the same time has had success in curing the disease

References

Alexander Locke

http://www.telegraph.co.uk/culture/3662783/A-chance-for-life.html

Entrez Gene

http://www.ncbi.nlm.nih.gov/gene/3561? ordinalpos=2&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RV DocSum

Genes and Disease

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=gnd.section.153&ref=sidebar

Gene Reviews

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=x-scid

OMIM

http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=300400

Science Museum

http://www.sciencemuseum.org.uk/on-line/genes/221.asp

Wikipedia

http://en.wikipedia.org/wiki/Severe_combined_immunodeficiency

http://en.wikipedia.org/wiki/X-SCID